Laplacians of graphs and Cheeger inequalities
نویسنده
چکیده
We define the Laplacian for a general graph and then examine several isoperimetric inequalities which relate the eigenvalues of the Laplacian to a number of graphs invariants such as vertex or edge expansions and the isoperimetric dimension of a graph.
منابع مشابه
Cheeger Inequalities for Submodular Transformations
The Cheeger inequality for undirected graphs, which relates the conductance of an undirected graph and the second smallest eigenvalue of its normalized Laplacian, is a cornerstone of spectral graph theory. The Cheeger inequality has been extended to directed graphs and hypergraphs using normalized Laplacians for those, that are no longer linear but piecewise linear transformations. In this pape...
متن کاملLaplacians and the Cheeger inequality for directed graphs
We consider Laplacians for directed graphs and examine their eigenvalues. We introduce a notion of a circulation in a directed graph and its connection with the Rayleigh quotient. We then define a Cheeger constant and establish the Cheeger inequality for directed graphs. These relations can be used to deal with various problems that often arise in the study of non-reversible Markov chains inclu...
متن کاملSubmodular Hypergraphs: p-Laplacians, Cheeger Inequalities and Spectral Clustering
We introduce submodular hypergraphs, a family of hypergraphs that have different submodular weights associated with different cuts of hyperedges. Submodular hypergraphs arise in clustering applications in which higher-order structures carry relevant information. For such hypergraphs, we define the notion of p-Laplacians and derive corresponding nodal domain theorems and k-way Cheeger inequaliti...
متن کاملGeometric and spectral properties of locally tessellating planar graphs
In this article, we derive bounds for values of the global geometry of locally tessellating planar graphs, namely, the Cheeger constant and exponential growth, in terms of combinatorial curvatures. We also discuss spectral implications for the Laplacians.
متن کاملLimits of finite graphs, Von Neumann algebras and a Cheeger type inequality
We prove that for any weakly convergent sequence of finite graphs with bounded vertex degrees there exists a limit graphing and thus an associated Type-II1 von Neumann algebra. The Kesten-von Neumann-Serre spectral measure of the Laplacian on the limit graphing is the weak limit of the spectral measures of the Laplacians of the finite graphs. Using this limit techniques we prove a Cheeger type ...
متن کامل